On the locus of Prym curves where the Prym-canonical map is not an embedding

Ciro Ciliberto Dipartimento di Matematica, Università di Roma Tor Vergata, Roma, Italy Thomas Dedieu Institut de Mathématiques de Toulouse, Université de Toulouse, France Concettina Galati Dipartimento di Matematica e Informatica, Università della Calabria, Arcavacata di Rende (CS), Italy Andreas Leopold Knutsen Department of Mathematics, University of Bergen, Norway

Algebraic Topology and General Topology mathscidoc:2203.44001

Arkiv for Matematik, 58, (1), 71-85, 2020.4
We prove that the locus of Prym curves (C,η) of genus g≥5 for which the Prym-canonical system |ωC(η)| is base point free but the Prym-canonical map is not an embedding is irreducible and unirational of dimension 2g+1.
No keywords uploaded!
[ Download ] [ 2022-03-10 16:53:35 uploaded by arkivadmin ] [ 66 downloads ] [ 0 comments ]
@inproceedings{ciro2020on,
  title={On the locus of Prym curves where the Prym-canonical map is not an embedding},
  author={Ciro Ciliberto, Thomas Dedieu, Concettina Galati, and Andreas Leopold Knutsen},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20220310165335360172933},
  booktitle={Arkiv for Matematik},
  volume={58},
  number={1},
  pages={71-85},
  year={2020},
}
Ciro Ciliberto, Thomas Dedieu, Concettina Galati, and Andreas Leopold Knutsen. On the locus of Prym curves where the Prym-canonical map is not an embedding. 2020. Vol. 58. In Arkiv for Matematik. pp.71-85. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20220310165335360172933.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved