Quon language: surface algebras and Fourier duality

Zhengwei Liu Departments of Mathematics and of Physics, Harvard University, Cambridge, USA

Mathematical Physics Quantum Algebra Spectral Theory and Operator Algebra mathscidoc:2207.22003

Communications in Mathematical Physics, 366, 865–894, 2019.3
Quon language is a 3D picture language that we can apply to simulate mathematical concepts. We introduce the surface algebras as an extension of the notion of planar algebras to higher genus surface. We prove that there is a unique one-parameter extension. The 2D defects on the surfaces are quons, and surface tangles are transformations. We use quon language to simulate graphic states that appear in quantum information, and to simulate interesting quantities in modular tensor categories. This simulation relates the pictorial Fourier duality of surface tangles and the algebraic Fourier duality induced by the S matrix of the modular tensor category. The pictorial Fourier duality also coincides with the graphic duality on the sphere. For each pair of dual graphs, we obtain an algebraic identity related to the S matrix. These identities include well-known ones, such as the Verlinde formula; partially known ones, such as the 6j-symbol self-duality; and completely new ones.
No keywords uploaded!
[ Download ] [ 2022-07-03 15:55:40 uploaded by Liuzhengwei ] [ 518 downloads ] [ 0 comments ]
  title={Quon language: surface algebras and Fourier duality},
  author={Zhengwei Liu},
  booktitle={Communications in Mathematical Physics},
Zhengwei Liu. Quon language: surface algebras and Fourier duality. 2019. Vol. 366. In Communications in Mathematical Physics. pp.865–894. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20220703155540155202533.
Please log in for comment!
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved