Provably Secure Password Authenticated Key Exchange Based on RLWE for the Post-Quantum World

Jintai Ding University of Cincinnati, Cincinnati, USA Saed Alsayigh University of Cincinnati, Cincinnati, USA Jean Lancrenon University of Luxembourg, Luxembourg City, Luxembourg Saraswathy RV University of Cincinnati, Cincinnati, USA Michael Snook University of Cincinnati, Cincinnati, USA

TBD mathscidoc:2207.43078

CT-RSA 2017, 183–204, 2017.2
Authenticated Key Exchange (AKE) is a cryptographic scheme with the aim to establish a high-entropy and secret session key over a insecure communications network. Password-Authenticated Key Exchange (PAKE) assumes that the parties in play share a simple password, which is cheap and human-memorable and is used to achieve the authentication. PAKEs are practically relevant as these features are extremely appealing in an age where most people access sensitive personal data remotely from more-and-more pervasive hand-held devices. Theoretically, PAKEs allow the secure computation and authentication of a high-entropy piece of data using a low-entropy string as a starting point. In this paper, we apply the recently proposed technique introduced in [19] to construct two lattice-based PAKE protocols enjoying a very simple and elegant design that is an parallel extension of the class of Random Oracle Model (ROM)-based protocols PAK and PPK [13, 41], but in the lattice-based setting. The new protocol resembling PAK is three-pass, and provides mutual explicit authentication, while the protocol following the structure of PPK is two-pass, and provides implicit authentication. Our protocols rely on the Ring-Learning-with-Errors (RLWE) assumption, and exploit the additive structure of the underlying ring. They have a comparable level of efficiency to PAK and PPK, which makes them highly attractive. We present a preliminary implementation of our protocols to demonstrate that they are both efficient and practical. We believe they are suitable quantum safe replacements for PAK and PPK.
No keywords uploaded!
[ Download ] [ 2022-07-15 10:32:31 uploaded by dingjt ] [ 844 downloads ] [ 0 comments ]
@inproceedings{jintai2017provably,
  title={Provably Secure Password Authenticated Key Exchange Based on RLWE for the Post-Quantum World},
  author={Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20220715103231733744657},
  booktitle={CT-RSA 2017},
  pages={183–204},
  year={2017},
}
Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook. Provably Secure Password Authenticated Key Exchange Based on RLWE for the Post-Quantum World. 2017. In CT-RSA 2017. pp.183–204. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20220715103231733744657.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved