1
Dehne F, Fellows M R, Fernau H, et al. Nonblocker: parameterized algorithmics for minimum dominating set[C]. conference on current trends in theory and practice of informatics, 2006: 237-245.
2
H Abdollahzadeh Ahangar Β· Michael A Henning Β· Christian Lowenstein Β· Yancai Zhao Β· Vladimir Samodivkin. Signed Roman domination in graphs. 2014.
3
Liu C, Chang G J. Roman Domination on 2-Connected Graphs[J]. SIAM Journal on Discrete Mathematics, 2012, 26(1): 193-205.
4
Liedloff M, Kloks T, Liu J, et al. Roman domination over some graph classes[J]. workshop on graph-theoretic concepts in computer science, 2005: 103-114.
5
Fellows M R, Pfandler A, Rosamond F, et al. The parameterized complexity of abduction[C]. national conference on artificial intelligence, 2012: 743-749.
6
Liu C, Chang G J. Roman domination on strongly chordal graphs[J]. Journal of Combinatorial Optimization, 2013, 26(3): 608-619.
7
Bermudo S, Fernau H. Combinatorics for smaller kernels: The differential of a graph[J]. Theoretical Computer Science, 2015: 330-345.
8
Abukhzam F N, Bazgan C, Chopin M, et al. Approximation Algorithms Inspired by Kernelization Methods[C]. international symposium on algorithms and computation, 2014: 479-490.
9
Abukhzam F N, Bazgan C, Chopin M, et al. Data reductions and combinatorial bounds for improved approximation algorithms[J]. Journal of Computer and System Sciences, 2016, 82(3): 503-520.
10
Geodesy. Signed Roman domination in graphs. 2014.