1
Hu X Y, Adams N A, Shu C, et al. Positivity-preserving method for high-order conservative schemes solving compressible Euler equations[J]. Journal of Computational Physics, 2013: 169-180.
2
Zhang Y, Zhang X, Shu C, et al. Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes[J]. Journal of Computational Physics, 2013: 295-316.
3
Zhengfu Xu. Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. 2014.
4
Cheng J, Shu C. Positivity-preserving Lagrangian scheme for multi-material compressible flow[J]. Journal of Computational Physics, 2014: 143-168.
5
Liang C, Xu Z. Parametrized Maximum Principle Preserving Flux Limiters for High Order Schemes Solving Multi-Dimensional Scalar Hyperbolic Conservation Laws[J]. Journal of Scientific Computing, 2014, 58(1): 41-60.
6
Xiong T, Qiu J, Xu Z, et al. A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows[J]. Journal of Computational Physics, 2013: 310-331.
7
Yee H C, Kotov D V, Wang W, et al. Spurious behavior of shock-capturing methods by the fractional step approach: Problems containing stiff source terms and discontinuities[J]. Journal of Computational Physics, 2013: 266-291.
8
Xiong T, Qiu J, Xu Z, et al. Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations[J]. Journal of Scientific Computing, 2016, 67(3): 1066-1088.
9
Guo Y, Xiong T, Shi Y, et al. A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations[J]. Journal of Computational Physics, 2014: 505-523.
10
Christlieb A, Liu Y, Tang Q, et al. High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes[J]. Journal of Computational Physics, 2015: 334-351.