Rationally convex sets on the unit sphere in ℂ^{2}

John Wermer Mathematics Department, Brown University

TBD mathscidoc:1701.333119

Arkiv for Matematik, 46, (1), 183-196, 2006.2
Let$X$be a rationally convex compact subset of the unit sphere$S$in ℂ^{2}, of three-dimensional measure zero. Denote by$R$($X$) the uniform closure on$X$of the space of functions$P$/$Q$, where$P$and$Q$are polynomials and$Q$≠0 on$X$. When does$R$($X$)=$C$($X$)?
No keywords uploaded!
[ Download ] [ 2017-01-08 20:36:21 uploaded by arkivadmin ] [ 778 downloads ] [ 0 comments ]
@inproceedings{john2006rationally,
  title={Rationally convex sets on the unit sphere in ℂ^{2}},
  author={John Wermer},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203621427114928},
  booktitle={Arkiv for Matematik},
  volume={46},
  number={1},
  pages={183-196},
  year={2006},
}
John Wermer. Rationally convex sets on the unit sphere in ℂ^{2}. 2006. Vol. 46. In Arkiv for Matematik. pp.183-196. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203621427114928.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved