The injectivity of the extended Gauss map of general projections of smooth projective varieties

Marc Coppens Departement Industrieel Ingenieur en Biotechniek, Katholieke Hogeschool Kempen

TBD mathscidoc:1701.333121

Arkiv for Matematik, 46, (1), 31-41, 2005.12
Let$X$be a smooth$n$-dimensional projective variety embedded in some projective space ℙ^{$N$}over the field ℂ of the complex numbers. Associated with the general projection of$X$to a space ℙ^{$N$-$m$}($N$-$m$>$n$+1) one defines an extended Gauss map $\overline{\gamma}\colon\overline{X}\rightarrow\text{Gr}(n;N-m)$ (in case$N$-$m$>2$n$-1 this is the Gauss map of the image of$X$under the projection). We prove that $\overline{X}$ is smooth. In case any two different points of$X$do have disjoint tangent spaces then we prove that $\overline{\gamma}$ is injective.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:36:21 uploaded by arkivadmin ] [ 858 downloads ] [ 0 comments ]
@inproceedings{marc2005the,
  title={The injectivity of the extended Gauss map of general projections of smooth projective varieties},
  author={Marc Coppens},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203621665261930},
  booktitle={Arkiv for Matematik},
  volume={46},
  number={1},
  pages={31-41},
  year={2005},
}
Marc Coppens. The injectivity of the extended Gauss map of general projections of smooth projective varieties. 2005. Vol. 46. In Arkiv for Matematik. pp.31-41. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203621665261930.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved