Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes

Jianqing Fan Elias Masry

Statistics Theory and Methods mathscidoc:1912.43309

Journal of multivariate analysis, 43, (2), 237-271, 1992.11
Errors-in-variables regression is the study of the association between covariates and responses where covariates are observed with errors. In this paper, we consider the estimation of multivariate regression functions for dependent data with errors in covariates. Nonparametric deconvolution technique is used to account for errors-in-variables. The asymptotic behavior of regression estimators depends on the smoothness of the error distributions, which are characterized as either ordinarily smooth or super smooth. Asymptotic normality is established for both strongly mixing and -mixing processes, when the error distribution function is either ordinarily smooth or super smooth.
No keywords uploaded!
[ Download ] [ 2019-12-21 11:36:25 uploaded by Jianqing_Fan ] [ 337 downloads ] [ 0 comments ]
@inproceedings{jianqing1992multivariate,
  title={Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes},
  author={Jianqing Fan, and Elias Masry},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20191221113625947997869},
  booktitle={Journal of multivariate analysis},
  volume={43},
  number={2},
  pages={237-271},
  year={1992},
}
Jianqing Fan, and Elias Masry. Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes. 1992. Vol. 43. In Journal of multivariate analysis. pp.237-271. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20191221113625947997869.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved