Persistent spectral graph

Rui Wang Michigan State University Duc Duy Nguyen University of Kentucky Guowei Wei Michigan State University

Combinatorics Data Analysis, Bio-Statistics, Bio-Mathematics Algebraic Topology and General Topology mathscidoc:2103.06001

Int J Numer Meth Biomed Engng, 36, 2020.4
Persistent homology is constrained to purely topological persistence, while multiscale graphs account only for geometric information. This work introduces persistent spectral theory to create a unified low-dimensional multiscale paradigm for revealing topological persistence and extracting geometric shapes from high-dimensional datasets. For a point-cloud dataset, a filtration procedure is used to generate a sequence of chain complexes and associated families of simplicial complexes and chains, from which we construct persistent combinatorial Laplacian matrices. We show that a full set of topological persistence can be completely recovered from the harmonic persistent spectra, that is, the spectra that have zero eigenvalues, of the persistent combinatorial Laplacian matrices. However, non-harmonic spectra of the Laplacian matrices induced by the filtration offer another powerful tool for data analysis, modeling, and prediction. In this work, fullerene stability is predicted by using both harmonic spectra and non-harmonic persistent spectra, while the latter spectra are successfully devised to analyze the structure of fullerenes and model protein flexibility, which cannot be straightforwardly extracted from the current persistent homology. The proposed method is found to provide excellent predictions of the protein B-factors for which current popular biophysical models break down.
persistent spectral analysis, persistent spectral graph, persistent spectral theory, spectral data analysis
[ Download ] [ 2021-03-04 12:07:08 uploaded by wangru25 ] [ 483 downloads ] [ 0 comments ]
@inproceedings{rui2020persistent,
  title={Persistent spectral graph},
  author={Rui Wang, Duc Duy Nguyen, and Guowei Wei},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20210304120708905215733},
  booktitle={Int J Numer Meth Biomed Engng},
  volume={36},
  year={2020},
}
Rui Wang, Duc Duy Nguyen, and Guowei Wei. Persistent spectral graph. 2020. Vol. 36. In Int J Numer Meth Biomed Engng. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20210304120708905215733.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved