A note on arithmetic Breuil-Kisin-Fargues modules

Heng Du Purdue University

arXiv subject: Number Theory (math.NT) mathscidoc:2205.60001

2019.10
Let K be a discrete valuation field, we combine the construction of Fargues-Fontaine of GK-equivariant modifications of vector bundles over the Fargues-Fontaine curve XFF using weakly admissible filtered (φ,N,GK)-modules over K, with Scholze and Fargues' theorems that relate modifications of vector bundles over the Fargues-Fontaine curve with mixed characteristic shtukas and Breuil-Kisin-Fargues modules. We give a characterization of Breuil-Kisin-Fargues modules with semilinear GK-actions that produced in this way and compare those Breuil-Kisin-Fargues modules with Kisin modules.
No keywords uploaded!
[ Download ] [ 2022-05-17 15:32:52 uploaded by hengdu ] [ 484 downloads ] [ 0 comments ]
@inproceedings{heng2019a,
  title={A note on arithmetic Breuil-Kisin-Fargues modules},
  author={Heng Du},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20220517153252967346231},
  year={2019},
}
Heng Du. A note on arithmetic Breuil-Kisin-Fargues modules. 2019. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20220517153252967346231.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved