This article presents a novel and flexible bubble modelling technique for multi-fluid simulations using a volume fraction representation. By combining the volume fraction data obtained from a primary multi-fluid simulation with simple and efficient secondary bubble simulation, a range of real-world bubble phenomena are captured with a high degree of physical realism, including large bubble deformation, sub-cell bubble motion, bubble stacking over the liquid surface, bubble volume change, dissolving of bubbles, etc. Without any change in the primary multi-fluid simulator, our bubble modelling approach is applicable to any multi-fluid simulator based on the volume fraction representation.