We define piecewise continuous almost automorphic (p.c.a.a.) functions in the manners of Bochner, Bohr and Levitan, respectively, to describe almost automorphic motions in impulsive systems, and prove that with certain prefixed possible discontinuities they are equivalent to quasi-uniformly continuous Stepanov almost automorphic ones. Spatially almost automorphic sets on the line, which serve as suitable objects containing discontinuities of p.c.a.a. functions, are characterized in the manners of Bochner, Bohr and Levitan, respectively, and shown to be equivalent. Two Favard's theorems are established to illuminate the importance and convenience of p.c.a.a. functions in the study of almost periodically forced impulsive systems.