Suppose that $\eta$ is a Schramm-Loewner evolution ($\SLE_\kappa$) in a smoothly bounded simply connected domain $D \subset \C$ and that $\phi$ is a conformal map from $\D$ to a connected component of $D \setminus \eta([0,t])$ for some $t>0$. The multifractal spectrum of $\eta$ is the function $(-1,1) \to [0,\infty)$ which, for each $s \in (-1,1)$, gives the Hausdorff dimension of the set of points $x \in \partial \D$ such that $|\phi'( (1-\epsilon) x)| = \epsilon^{-s+o(1)}$ as $\epsilon \to 0$. We rigorously compute the a.s.\ multifractal spectrum of $\SLE$, confirming a prediction due to Duplantier. As corollaries, we confirm a conjecture made by Beliaev and Smirnov for the a.s.\ bulk integral means spectrum of $\SLE$, we obtain the optimal H\"older exponent for a conformal map which uniformizes the complement of an $\SLE$ curve, and we obtain a new derivation of the a.s.\ Hausdorff dimension of the $\SLE$ curve for $\kappa \leq 4$. Our results also hold for the $\SLE_\kappa(\ul\rho)$ processes with general vectors of weight $\ul\rho$.