We extend two results about the ordinary continued fraction expansion to best simultaneous Diophantine approximations of vectors or matrices. The first is Levy-Khintchin Theorem about the almost sure growth rate of the denominators of the convergents. The second is a Theorem of Bosma, Hendrik and Wiedijk about the almost sure limit distribution of the sequence of products q_n d(q_n θ,Z) where the qn's are the denominators of the convergents associated with the real number θ by the ordinary continued fraction algorithm. Beside these two main results, we show that when d≥2, for almost all vectors θ∈R^d, lim inf_{n→∞} q_{n+k} d(q_n θ,Z^d)=0 for all positive integers k, where (q_n)_{n∈N} is the sequence of best approximation denominators of θ.