We consider a 1-parameter family of strictly convex hypersurfaces in Rn+1 moving with speed −Kαν, where ν denotes the outward-pointing unit normal vector and α⩾1/(n+2). For α>1/(n+2), we show that the flow converges to a round sphere after rescaling. In the affine invariant case α=1/(n+2), our arguments give an alternative proof of the fact that the flow converges to an ellipsoid after rescaling.