1
Brendle S. Blow-up phenomena for the Yamabe equation[J]. Journal of the American Mathematical Society, 2008, 21(4): 951-979.
2
Trudinger N S, Wang X. The intermediate case of the Yamabe problem for higher order curvatures[J]. International Mathematics Research Notices, 2010, 2010(13): 2437-2458.
3
Druet O, Hebey E, Vetois J, et al. Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[J]. Journal of Functional Analysis, 2010, 258(3): 999-1059.
4
Druet O, Hebey E. Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium[J]. Analysis \u0026 PDE, 2009, 2(3): 305-359.
5
Micheletti A M, Pistoia A, Vetois J, et al. Blow-up solutions for asymptotically critical elliptic equations on Riemannian manifolds[J]. Indiana University Mathematics Journal, 2009, 58(4): 1719-1746.
6
De Lima L L, Girao F. The ADM mass of asymptotically flat hypersurfaces[J]. Transactions of the American Mathematical Society, 2011, 367(9): 6247-6266.
7
Esposito P, Pistoia A, Vetois J, et al. The effect of linear perturbations on the Yamabe problem[J]. Mathematische Annalen, 2012: 511-560.
8
Olivier Druet · Emmanuel Hebey. EXISTENCE AND A PRIORI BOUNDS FOR ELECTROSTATIC KLEIN–GORDON–MAXWELL SYSTEMS IN FULLY INHOMOGENEOUS SPACES. 2010.
9
Hebey E, Truong T T. Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds[J]. Crelle\u0027s Journal, 2010, 2012(667).
10
Robert F, Vetois J. Sign-Changing Blow-Up for Scalar Curvature Type Equations[J]. Communications in Partial Differential Equations, 2012, 38(8): 1437-1465.