We study the Seiberg-Witten invariant λSW(X) of smooth spin 4-manifolds X with integral homology of S1×S3 defined by Mrowka, Ruberman, and Saveliev as a signed count of irreducible monopoles amended by an index-theoretic correction term. We prove a splitting formula for this invariant in terms of the Frøyshov invariant h(X) and a certain Lefschetz number in the reduced monopole Floer homology of Kronheimer and Mrowka. We apply this formula to obstruct existence of metrics of positive scalar curvature on certain 4-manifolds, and to exhibit new classes of integral homology 3-spheres of Rohlin invariant one which have infinite order in the homology cobordism group.