Let O_25 be the vertex algebraic braided tensor category of finite-length modules for the Virasoro Lie algebra at central charge 25 whose composition factors are the irreducible quotients of reducible Verma modules. We show that O_25 is rigid and that its simple objects generate a semisimple tensor subcategory that is braided tensor equivalent to an abelian 3-cocycle twist of the category of finite-dimensional sl_2-modules. We also show that this sl_2-type subcategory is braid-reversed tensor equivalent to a similar category for the Virasoro algebra at central charge 1. As an application, we construct a simple conformal vertex algebra which contains the Virasoro vertex operator algebra of central charge 25 as a PSL_2(C)-orbifold. We also use our results to study Arakawa's chiral universal centralizer algebra of SL_2 at level -1, showing that it has a symmetric tensor category of representations equivalent to Rep PSL_2(C). This algebra is an extension of the tensor product of Virasoro vertex operator algebras of central charges 1 and 25, analogous to the modified regular representations of the Virasoro algebra constructed earlier for generic central charges by I. Frenkel-Styrkas and I. Frenkel-M. Zhu.