The main purpose of this paper is to classify exchange relation planar algebras with 4 dimensional 2-boxes. Besides its skein theory, we emphasize the positivity of subfactor planar algebras based on the Schur product theorem. We will discuss the lattice of projections of 2-boxes, specifically the rank of the projections. From this point, several results about biprojections are obtained. The key break of the classification is to show the existence of a biprojection. By this method, we also classify another two families of subfactor planar algebras: subfactor planar algebras generated by 2-boxes with 4 dimensional 2-boxes and at most 23 dimensional 3-boxes; subfactor planar algebras generated by 2-boxes, such that the quotient of 3-boxes by the basic construction ideal is abelian. They extend the classification of singly generated planar algebras obtained by Bisch, Jones and the author.