We study the boundedness problem for maximal operators $ \mathcal{M} $ associated with averages along smooth hypersurfaces$S$of finite type in 3-dimensional Euclidean space. For$p$> 2, we prove that if no affine tangent plane to$S$passes through the origin and$S$is analytic, then the associated maximal operator is bounded on $ {L^p}\left( {{\mathbb{R}^3}} \right) $ if and only if$p$>$h$($S$), where$h$($S$) denotes the so-called height of the surface$S$(defined in terms of certain Newton diagrams). For non-analytic$S$we obtain the same statement with the exception of the exponent$p$=$h$($S$). Our notion of height$h$($S$) is closely related to A. N. Varchenko’s notion of height$h$($ϕ$) for functions$ϕ$such that$S$can be locally represented as the graph of$ϕ$after a rotation of coordinates.