Henryk Iwaniec. Almost-Primes Represented by Quadratic Polynomials.. 1978.
2
Tolev D I. On a theorem of Bombieri-Vinogradov type for prime numbers from a thin set[J]. Acta Arithmetica, 1997, 81(1): 57-68.
3
Friedlander J B, Lagarias J C. On the distribution in short intervals of integers having no large prime factor[J]. Journal of Number Theory, 1987, 25(3): 249-273.
4
Baier S, Zhao L. On primes in quadratic progressions[J]. International Journal of Number Theory, 2007, 05(06): 1017-1035.
5
Baier S, Zhao L. On Primes Represented by Quadratic Polynomials[C]., 2007.
6
Friedlander J B. Producing Prime Numbers via Sieve Methods[C]., 2006: 1-49.
7
Jacek Pomyka. CUBIC NORMS REPRESENTED BY QUADRATIC SEQUENCES. 1993.
8
John B Friedlander · Igor E Shparlinski. Enumeration of certain varieties over a finite field. 2014.
9
Jacek Pomykala. Cubic norms represented by quadratic sequences. 1993.
10
Liangyi Zhao. Title On primes in quadratic progressions. 2008.
J. CogdellOklahoma State University, Stillwater, OK, USAI. Piatetski-ShapiroYale University, New Haven, CT, USAJ. S. LiUniversity of Maryland, College Park, MD, USAP. SarnakStanford University, Stanford, CA, USA
Fernandes A, Gutierrez C, Rabanal R, et al. Global asymptotic stability for differentiable vector fields of R2[J]. Journal of Differential Equations, 2004, 206(2): 470-482.
2
Goffman C. Lower Semi-Continuity and Area Functionals, II. The Banach Area[J]. American Journal of Mathematics, 1954, 76(3).
3
Stegall C. The topology of certain spaces of measures[J]. Topology and its Applications, 1991: 73-112.
4
Goffman C. Lower-semi-continuity and area functionals: I. The non-parametric case[J]. Rendiconti Del Circolo Matematico Di Palermo, 1953, 2(2): 203-235.
5
Brandi P, Salvadori A. On convergence in area in the generalized sense[J]. Journal of Mathematical Analysis and Applications, 1983, 92(1): 119-138.
6
Gutierrez C, Rabanal R. Injectivity of differentiable maps R^2 --\u003e R^2 at infinity[J]. Bulletin of The Brazilian Mathematical Society, 2006.
7
Goffman C. A characterization of linearly continuous functions whose partial derivatives are measures[J]. Acta Mathematica, 1967, 117(1): 165-190.
8
Goffman C. Proof of a theorem of Saks and Sierpinski[J]. Bulletin of the American Mathematical Society, 1948, 54(10): 950-952.
9
Zink R E. On semicontinuous fuctions and Baire functions[J]. Transactions of the American Mathematical Society, 1965: 1-9.
10
Welland G V. Differentiability almost everywhere of functions of several variables[J]. Proceedings of the American Mathematical Society, 1968, 19(1): 130-134.