We study the energy-critical focusing non-linear wave equation, with data in the energy space, in dimensions 3, 4 and 5. We prove that for Cauchy data of energy smaller than the one of the static solution$W$which gives the best constant in the Sobolev embedding, the following alternative holds. If the initial data has smaller norm in the homogeneous Sobolev space$H$^{1}than the one of$W$, then we have global well-posedness and scattering. If the norm is larger than the one of$W$, then we have break-down in finite time.