For Ξ∈$R$^{$n$},$t$∈$R$and$f$∈$S$($R$^{$n$}) define $$\left( {S^2 f} \right)\left( t \right)\left( \xi \right) = \exp \left( {it\left| \xi \right|^2 } \right)\hat f\left( \xi \right)$$ . We determine the optimal regularity$s$_{0}such that $$\int_{R^n } {\left\| {(S^2 f)[x]} \right\|_{L^2 (R)}^2 \frac{{dx}}{{(1 + |x|)^b }} \leqslant C\left\| f \right\|_{H^s (R^n )}^2 ,s > s_0 } ,$$ holds where$C$is independent of$f$∈$S$($R$^{$n$}) or we show that such optimal regularity does not exist. This problem has been treated earlier, e.g. by Ben-Artzi and Klainerman [2], Kato and Yajima [4], Simon [6], Vega [9] and Wang [11].