1
Kazhdan D, Lusztig G. Proof of the Deligne-Langlands conjecture for Hecke algebras[J]. Inventiones Mathematicae, 1987, 87(1): 153-215.
2
Henri Gillet. Riemann-Roch theorems for higher algebraic K-theory. 1981.
3
Nakajima H. Quiver varieties and finite dimensional representations of quantum affine algebras[J]. Journal of the American Mathematical Society, 1999, 14(1): 145-238.
4
Diaconescu D, Gomis J. Fractional branes and boundary states in orbifold theories[J]. Journal of High Energy Physics, 1999, 2000(10): 001-001.
5
Coates T, Givental A B. Quantum Riemann-Roch, Lefschetz and Serre[J]. Annals of Mathematics, 2001, 165(1): 15-53.
6
Ito Y, Nakajima H. McKay correspondence and Hilbert schemes in dimension three[J]. Topology, 1998, 39(6): 1155-1191.
7
Givental A B, Lee Y. Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups[J]. Inventiones Mathematicae, 2001, 151(1): 193-219.
8
Baum P, Higson N, Schick T, et al. On the Equivalence of Geometric and Analytic K-Homology[J]. Pure and Applied Mathematics Quarterly, 2007, 3(1): 1-24.
9
La Ossa X D, Florea B, Skarke H, et al. D-branes on noncompact Calabi–Yau manifolds: K-theory and monodromy[J]. Nuclear Physics, 2001, 644(1): 170-200.
10
Eyal Markman. On the monodromy of moduli spaces of sheaves on K3 surfaces II. 2003.