The Wilson remainders for all primes less than 50,000 have been computed and tabulated. The distribution of the remainders divided by the corresponding primes has also been examined.
Fay T H. Convex functions[J]. Mathematics and Computer Education, 1998.
2
Ballmann W, Brin M. Lectures on spaces of nonpositive curvature[C]., 1995.
3
Reich S, Shafrir I. Nonexpansive iterations in hyperbolic spaces[J]. Nonlinear Analysis-theory Methods \u0026 Applications, 1990, 15(6): 537-558.
4
Ballmann W, Brin M. Orbihedra of nonpositive curvature[J]. Publications Mathématiques de l\u0027IHÉS, 1995, 82(1): 169-209.
5
Herbert Busemann. The geometry of Finsler spaces. 1950.
6
Auslander L, Markus L. HOLONOMY OF FLAT AFFINELY CONNECTED MANIFOLDS[J]. Annals of Mathematics, 2016, 62(1).
7
Green L. Surfaces without conjugate points[J]. Transactions of the American Mathematical Society, 1954, 76(3): 529-546.
8
Thomas Foertsch · Alexander Lytchak · Viktor Schroeder. Non-positive curvature and the Ptolemy inequality. 2007.
9
Khamsi M A, Khan A R. Inequalities in metric spaces with applications[J]. Nonlinear Analysis-theory Methods \u0026 Applications, 2011, 74(12): 4036-4045.
10
Auslander L. On curvature in Finsler geometry[J]. Transactions of the American Mathematical Society, 1955, 79(2): 378-388.
Hansen W. Liouville\u0027s theorem and the restricted mean value property in the plane[J]. Journal de Mathématiques Pures et Appliquées, 1998, 77(9): 943-947.
9
Hansen W, Nadirashvili N. Harmonic functions and averages on shells[J]. Journal D Analyse Mathematique, 2001, 84(1): 231-241.
10
Kadiri M E. LIOUVILLE\u0027S THEOREM AND THE RESTRICTED MEAN PROPERTY FOR BIHARMONIC FUNCTIONS[C]., 2004.
Brent R P. On the zeros of the Riemann zeta function in the critical strip[J]. Mathematics of Computation, 1979, 33(148): 1361-1372.
2
Lehmer D H. Extended computation of the Riemann zeta-function[J]. Mathematika, 1956, 3(02): 102-108.
3
Hutchinson J I. On the roots of the Riemann zeta function[J]. Transactions of the American Mathematical Society, 1925, 27(1): 49-60.
4
Brent R P, De Lune J V, Riele H J, et al. On the zeros of the Riemann zeta function in the critical strip. II[J]. Mathematics of Computation, 1982, 39(160): 681-688.
5
Hejhal D A. Zeros of Epstein zeta functions and supercomputers[C]., 1986.
6
Korolev M A. Gram\u0027s law and Selberg\u0027s conjecture on the distribution of zeros of the Riemann zeta function[J]. Izvestiya: Mathematics, 2010, 74(4): 743-780.
7
Todd J D. NUMERICAL ANALYSIS AT THE NATIONAL BUREAU OF STANDARDS[J]. Siam Review, 1975, 17(2): 361-370.
8
Kalpokas J, Steuding J. On the value-distribution of the Riemann zeta-function on the critical line[C]., 2009.
9
Fujii A. Explicit Formulas and Oscillations[C]., 1999: 219-267.
10
Trudgian T. On the success and failure of Gram\u0027s Law and the Rosser Rule[J]. Acta Arithmetica, 2011, 148(3): 225-256.