The Wilson remainders for all primes less than 50,000 have been computed and tabulated. The distribution of the remainders divided by the corresponding primes has also been examined.
Collingwood E F. On sets of maximum indetermination of analytic functions[J]. Mathematische Zeitschrift, 1957, 67(1): 377-396.
2
Knus M, Parimala R, Sridharan R, et al. Pfaffians, central simple algebras and similitudes[J]. Mathematische Zeitschrift, 1991, 206(1): 589-604.
3
Collingwood E F. On the linear and angular cluster sets of functions meromorphic in the unit circle[J]. Acta Mathematica, 1954, 91(1): 165-185.
4
Bagemihl F, Seidel W. Behavior of meromorphic functions on boundary paths, with applications to normal functions[J]. Archiv der Mathematik, 1960, 11(1): 263-269.
5
F W Gehring · A J Lohwater. On the Lindelöf Theorem. 1958.
6
David A Stegenga · Kenneth Stephenson. GENERIC COVERING PROPERTIES FOR SPACES OF ANALYTIC FUNCTIONS. II. 1985.
7
Storvick D A. On meromorphic functions of bounded characteristic[J]. Proceedings of the American Mathematical Society, 1957, 8(1): 32-38.
8
Cartwright M L, Collingwood E F. The radial limits of functions meromorphic in a circular disc[J]. Mathematische Zeitschrift, 1961, 76(1): 404-410.
9
Church P T. Global boundary behavior of meromorphic functions[J]. Acta Mathematica, 1961: 49-62.
10
Kurt Meier. Über Mengen von Randwerten meromorpher Funktionen. 1956.
Hans Peter Schlickewei · Wolfgang M Schmidt · Michel Waldschmidt. Zeros of linear recurrence sequences. 1999.
2
Schmidt W M. Linear Recurrence Sequences[C]., 2003: 171-247.
3
Bell J P, Lagarias J C. A Skolem-Mahler-Lech theorem for iterated automorphisms of $K$-algebras[J]. Canadian Journal of Mathematics, 2013, 67(2): 286-314.
4
Ruohonen K. Explicit test sets for iterated morphisms in free monoids and metabelian groups[J]. Theoretical Computer Science, 2005, 330(1): 171-191.
5
Evertse J, Ferretti R. A further improvement of the Quantitative Subspace Theorem[J]. Annals of Mathematics, 2010, 177(2): 513-590.
6
Patrick B Allen. On the multiplicity of linear recurrence sequences. 2007.
7
Zannier U. Diophantine equations with linear recurrences. An overview of some recent progress[J]. Journal de Theorie des Nombres de Bordeaux, 2005, 17(1): 423-435.
8
Fuchs C. POLYNOMIAL{EXPONENTIAL EQUATIONS AND LINEAR RECURRENCES[J]. Glasnik Matematicki, 2003, 38(2): 233-252.
9
Keijo Ruohonen. D0L sequence equivalence is in P for fixed alphabets. 2008.
Juha Heinonen · Pekka Koskela. Quasiconformal maps in metric spaces with controlled geometry. 1998.
2
Vaisala J. Relatively and inner uniform domains[J]. Conformal Geometry and Dynamics of The American Mathematical Society, 1998, 2(5): 56-88.
3
Vaisala J. Relatively and inner uniform domains[J]. Conformal Geometry and Dynamics of The American Mathematical Society, 1998, 2(5): 56-88.
4
Tyson J T. Metric and geometric quasiconformality in Ahlfors regular Loewner spaces[J]. Conformal Geometry and Dynamics of The American Mathematical Society, 2001, 5(3): 21-73.
5
Guy David · Todd Depauw · Tatiana Toro. A generalization of Reifenberg's theorem in $R^3$. 2006.
6
Vaisala J, Vuorinen M, Wallin H, et al. Thick sets and quasisymmetric maps[J]. Nagoya Mathematical Journal, 1994: 121-148.
7
David G, Toro T. Reifenberg Parameterizations for Sets with Holes[J]. Memoirs of the American Mathematical Society, 2009, 215(1012): 0-0.
8
Heinonen J, Nakki R. Quasiconformal distortion on arcs[J]. Journal D Analyse Mathematique, 1994, 63(1): 19-53.
9
Hurrisyrjanen R. An improved Poincaré inequality[J]. Proceedings of the American Mathematical Society, 1994, 120(1): 213-222.
10
Gehring F W. Quasiconformal Mappings in Euclidean Spaces[C]., 2005: 1-29.