Nilpotency for discrete groups can be defined in terms of central extensions. In this paper, the analogous definition for spaces is stated in terms of principal fibrations having infinite loop spaces as fibers, yielding a new invariant between the classical LS cocategory and the more recent notion of homotopy nilpotency introduced by Biedermann and Dwyer. This allows us to characterize finite homotopy nilpotent loop spaces in the spirit of Hubbuck’s Torus Theorem, and obtain corresponding results for p-compact groups and p-Noetherian groups.