Let X denote an equivariant embedding of a connected reductive group X over an algebraically closed field X . Let X denote a Borel subgroup of X and let X denote a X -orbit closure in X . When the characteristic of X is positive and X is projective we prove that X is globally X -regular. As a consequence, X is normal and Cohen-Macaulay for arbitrary X and arbitrary characteristics. Moreover, in characteristic zero it follows that X has rational singularities. This extends earlier results by the second author and M. Brion.