1
Lannes D, Marche F. A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations[J]. Journal of Computational Physics, 2015: 238-268.
2
Tritschler V K, Olson B J, Lele S K, et al. On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface[J]. Journal of Fluid Mechanics, 2014: 429-462.
3
Xiong T, Qiu J, Xu Z, et al. Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations[J]. Journal of Scientific Computing, 2016, 67(3): 1066-1088.
4
Guo Y, Xiong T, Shi Y, et al. A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations[J]. Journal of Computational Physics, 2014: 505-523.
5
Christlieb A, Liu Y, Tang Q, et al. High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes[J]. Journal of Computational Physics, 2015: 334-351.
6
Tritschler V K, Hickel S, Hu X Y, et al. On the Kolmogorov inertial subrange developing from Richtmyer-Meshkov instability[J]. Physics of Fluids, 2013, 25(7).
7
Jung S, Myong R. A second-order positivity-preserving finite volume upwind scheme for air-mixed droplet flow in atmospheric icing[J]. Computers \u0026 Fluids, 2013: 459-469.
8
Berthon C, Desveaux V. An entropy preserving MOOD scheme for the Euler equations[C]., 2014: 1-39.
9
Liu H, Qiu J. Finite Difference Hermite WENO Schemes for Conservation Laws, II: An Alternative Approach[J]. Journal of Scientific Computing, 2016, 66(2): 598-624.
10
Wu K, Tang H. High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics[J]. Journal of Computational Physics, 2015: 539-564.