We develop a global Poincar\'e residue formula to study period integrals of families of complex manifolds. For any compact complex manifold X equipped with a linear system V ∗ of generically smooth CY hypersurfaces, the formula expresses period integrals in terms of a canonical global meromorphic top form on X . Two important ingredients of our construction are the notion of a CY principal bundle, and a classification of such rank one bundles. We also generalize our construction to CY and general type complete intersections. When X is an algebraic manifold having a sufficiently large automorphism group G and V ∗ is a linear representation of G , we construct a holonomic D-module that governs the period integrals. The construction is based in part on the theory of tautological systems we have developed in the paper \cite{LSY1}, joint with R. Song. The approach allows us to explicitly describe a Picard-Fuchs type system for complete intersection varieties of general types, as well as CY, in any Fano variety, and in a homogeneous space in particular. In addition, the approach provides a new perspective of old examples such as CY complete intersections in a toric variety or partial flag variety.