David DrasinDepartment of Mathematics, Purdue UniversityPekka PankkaDepartment of Mathematics and Statistics, P.O. Box 68, (Gustaf Hällströmin katu 2b), University of Helsinki, Finland
We show that given $${n \geqslant 3}$$ , $${q \geqslant 1}$$ , and a finite set $${\{y_1, \ldots, y_q \}}$$ in $${\mathbb{R}^n}$$ there exists a quasiregular mapping $${\mathbb{R}^n\to \mathbb{R}^n}$$ omitting exactly points $${y_1, \ldots, y_q}$$ .
Qing LuSchool of Mathematical Sciences, Beijing Normal UniversityWeizhe ZhengMorningside Center of Mathematics and Hua Loo-Keng Key Laboratory of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
Arithmetic Geometry and Commutative Algebramathscidoc:1904.07002
Lenstra H W. Integer programming with a fixed number of variables[J]. Mathematics of Operations Research, 1983, 8(4): 538-548.
2
Niederreiter H. Quasi-Monte Carlo methods and pseudo-random numbers[J]. Bulletin of the American Mathematical Society, 1978, 84(6): 957-1041.
3
Victoria C P Chen · Kwokleung Tsui · Russell R Barton · Martin Meckesheimer. A review on design, modeling and applications of computer experiments. 2007.
4
Sprindzhuk V G. ACHIEVEMENTS AND PROBLEMS IN DIOPHANTINE APPROXIMATION THEORY[J]. Russian Mathematical Surveys, 1980, 35(4): 1-80.
5
Chen V C, Tsui K, Barton R R, et al. Ch. 7. A review of design and modeling in computer experiments[J]. Handbook of Statistics, 2003: 231-261.
6
Rickert J H. Simultaneous rational approximations and related diophantine equations.[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1993, 113(03): 461-472.
7
Niederreiter H. Methods for Estimating Discrepancy[C]., 1972: 203-236.
8
Dager R, Zuazua E. Controllability of star-shaped networks of strings[J]. Comptes Rendus De L Academie Des Sciences Serie I-mathematique, 2001, 332(7): 621-626.
9
Serge Lang. Transcendental numbers and diophantine approximations. 1971.
10
Mason R C. Norm form equations I[J]. Journal of Number Theory, 1986, 22(2): 190-207.