Kolodziej S. THE COMPLEX MONGE-AMPERE EQUATION[J]. Acta Mathematica, 1998, 180(1): 69-117.
2
Demailly J. A numerical criterion for very ample line bundles[J]. Journal of Differential Geometry, 1993, 37(2): 323-374.
3
Trudinger N S, Wang X. Hessian measures II[J]. Annals of Mathematics, 1999, 150(2): 579-604.
4
Alekseevsky D V, Cortes V. Geometric construction of the r-map: from affine special real to special K\\\
5
Trudinger N S, Wang X. ON THE WEAK CONTINUITY OF ELLIPTIC OPERATORS AND APPLICATIONS TO POTENTIAL THEORY[J]. American Journal of Mathematics, 2002, 124(2): 369-410.
6
Alexander Russakovskii · Bernard Shiffman. Value distribution for sequences of rational mappings and complex dynamics. 1996.
7
Philippe Eyssidieux · Vincent Guedj · Ahmed Zeriahi. Singular Kähler-Einstein metrics. 2009.
8
Labutin D A. Potential estimates for a class of fully nonlinear elliptic equations[J]. Duke Mathematical Journal, 2002, 111(1): 1-49.
9
Dinh T, Sibony N. Dynamique des applications d\u0027allure polynomiale[J]. Journal de Mathématiques Pures et Appliquées, 2003, 82(4): 367-423.
10
Demailly J. Mesures de Monge-Ampre et mesures pluriharmoniques[J]. Mathematische Zeitschrift, 1987, 194(4): 519-564.
In analogy with the classical Minkowski problem, necessary and sufficient
conditions are given to assure that a given measure on the unit sphere is the cone-volume
measure of the unit ball of a finite dimensional Banach space.
Bibby B M, Sorensen M. Martingale estimation functions for discretely observed diffusion processes[J]. Bernoulli, 1995: 17-39.
2
Carrasco M, Florens J. Generalization of GMM to a continuum of moment conditions[J]. Econometric Theory, 2000, 16(06): 797-834.
3
Raftery A E, Akman V. Bayesian analysis of a Poisson process with a change-point[J]. Biometrika, 1986, 73(1): 85-89.
4
Danielle Florenszmirou. Approximate discrete-time schemes for statistics of diffusion processes. 2010.
5
Carrasco M, Florens J, Renault E, et al. Chapter 77 Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization[J]. Handbook of Econometrics, 2007: 5633-5751.
6
Yoshida N. Estimation for diffusion processes from discrete observation[J]. Journal of Multivariate Analysis, 1992, 41(2): 220-242.
7
George J Jiang · John Knight. A Nonparametric Approach to the Estimation of Diffusion Processes - With an Application to a Short-Term Interest Rate Model. 1997.
8
David Verejones. Forecasting earthquakes and earthquake risk. 1995.
9
Kelly L, Platen E, Sorensen M, et al. ESTIMATION FOR DISCRETELY OBSERVED DIFFUSIONS USING TRANSFORM FUNCTIONS[J]. Journal of Applied Probability, 2004: 99-118.
10
George J Jiang. Nonparametric Modeling of U.S. Interest Rate Term Structure Dynamics and Implications on the Prices of Derivative Securities. 1998.
Mauro BeltramettiIstituto di Matematica dell' Università, Via L. B. Alberti, 4, Genova, ItalyAntonio LanteriDipartimento di Matematica “F. Enriques”-Università, Via C. Saldini, 50, Milano, ItalyMarino PalleschiDipartimento di Matematica “F. Enriques”-Università, Via C. Saldini, 50, Milano, Italy
We study Rademacher chaos indexed by a sparse set which has a fractional combinatorial dimension. We obtain tail estimates for finite sums and a normal limit theorem as the size tends to infinity. The tails for finite sums may be much larger than the tails of the limit.