Hans-Joachim HeinFordham UniversitySong SunStony Brook University
Analysis of PDEsComplex Variables and Complex AnalysisDifferential GeometryGeometric Analysis and Geometric TopologyMathematical PhysicsSymplectic Geometrymathscidoc:1806.01002
Distinguished Paper Award in 2018
Publications mathématiques de l'IHÉS, 126, (1), 73-130, 2017.11
Horodecki M, Horodecki P, Horodecki R, et al. On the necessary and sufficient conditions for separability of mixed quantum states[J]. Physics Letters B, 1996.
2
Choi M. Completely positive linear maps on complex matrices[J]. Linear Algebra and its Applications, 1975, 10(3): 285-290.
3
Rieffel M A. Induced representations of $C^* $-algebras[J]. Bulletin of the American Mathematical Society, 1972, 78(4): 606-609.
4
Arveson W B. Subalgebras ofC *-algebras[J]. Acta Mathematica, 1969, 123(1): 141-224.
5
Bengtsson I, Zyczkowski K. Geometry of Quantum States[C]., 2006.
6
Majewski W A, Tylec T. On the structure of positive maps II: low dimensional matrix algebras[J]. Journal of Mathematical Physics, 2012, 54(7).
7
Effros E G, Lance E C. Tensor products of operator algebras[J]. Advances in Mathematics, 1977, 25(1): 1-34.
8
Fuchs C A. Distinguishability and Accessible Information in Quantum Theory[C]., 1996.
9
M Keyl. Fundamentals of quantum information theory. 2002.
10
Accardi L, Frigerio A, Lewis J T, et al. Quantum stochastic processes[J]. Publications of The Research Institute for Mathematical Sciences, 1982, 18(1): 97-133.
Yiyu Liang · Yoshihiro Sawano · Tino Ullrich · Dachun Yang · Wen Yuan. New Characterizations of Besov-Triebel-Lizorkin-Hausdorff Spaces Including Coorbits and Wavelets. 2011.
2
Adams D R, Xiao J. Morrey Potentials and Harmonic Maps[J]. Communications in Mathematical Physics, 2011, 308(2): 439-456.
3
Yuan W, Sickel W, Yang D, et al. Interpolation of Morrey-Campanato and related smoothness spaces[J]. Science China-mathematics, 2014, 58(9): 1835-1908.
4
Xiangxing T, Yanlong S. Multilinear Commutators of Calderón-Zygmund Operator on λ-central Morrey Spaces[J]. Advances in Mathematics, 2011.
5
Liang Y, Nakai E, Yang D, et al. BOUNDEDNESS OF INTRINSIC LITTLEWOOD-PALEY FUNCTIONS ON MUSIELAK-ORLICZ MORREY AND CAMPANATO SPACES[J]. Banach Journal of Mathematical Analysis, 2013, 8(1): 221-268.
6
Pengtao Li · Junming Liu · Zengjian Lou. Integral operators on analytic Morrey spaces. 2014.
7
Mizuta Y, Ohno T. SOBOLEV\u0027S THEOREM AND DUALITY FOR HERZ-MORREY SPACES OF VARIABLE EXPONENT[J]. Annales Academiae Scientiarum Fennicae. Mathematica, 2014: 389-416.
8
Fu J, Xu J. Characterizations of Morrey type Besov and Triebel–Lizorkin spaces with variable exponents[J]. Journal of Mathematical Analysis and Applications, 2011, 381(1): 280-298.
9
Song L, Xiao J, Yan X, et al. Preduals of quadratic Campanato spaces associated to operators with heat kernel bounds[J]. Potential Analysis, 2014, 41(3): 849-867.
10
Ciqiang Zhuo · Dachun Yang · Wen Yuan. Hausdorff Besov-type and Triebel–Lizorkin-type spaces and their applications ☆. 2014.
Through a geometric capacitary analysis based on space dualities, this paper addresses several fundamental aspects of functional analysis and potential theory for the Morrey spaces in harmonic analysis over the Euclidean spaces.
Bannai E, Dougherty S T, Harada M, et al. Type II codes, even unimodular lattices, and invariant rings[J]. IEEE Transactions on Information Theory, 1999, 45(4): 1194-1205.
2
Jaehyun Yang. Invariant metrics and Laplacians on Siegel-Jacobi space. 2005.
3
Eiichi Bannai · M Harada · Tomoyoshi Ibukiyama · Akihiro Munemasa · Manabu Oura. Type II codes over F2 + 11F2 and applications to Hermitian modular forms. 2003.
4
Bannai E, Bannai E, Ozeki M, et al. On the Ring of Simultaneous Invariants for the Gleason-MacWilliams Group[J]. European Journal of Combinatorics, 1999, 20(7): 619-627.
5
Bernhard Runge. On Symmetric Hilbert Modular Forms. 1996.
6
Yang J, Yong Y, Huh S, et al. SECTIONAL SURVATURES OF THE SIEGEL-JACOBI SPACE[J]. Bulletin of The Korean Mathematical Society, 2013, 50(3): 787-799.
7
Bruinier J H, Westerholtraum M. Kudla\u0027s modularity conjecture and formal Fourier-Jacobi series[C]., 2014.
8
Tsushima · Koji. ON A DECOMPOSITION OF BRUHAT TYPE FOR A CERTAIN FINITE GROUP. 2003.
9
Francesco L Chiera. Type II Codes over , Invariant Rings and Theta Series. 2005.
10
Francesco L Chiera. Type II Codes over$$\mathbb{Z}/2k\mathbb{Z}$$, Invariant Rings and Theta Series. 2005.