Denote by Mnthe set of n ×ncomplex matrices. Let f:Mn→[0, ∞)be a continuous map such that f(μUAU∗) =f(A)for any complex unit μ, A ∈Mnand unitary U∈Mn, f(X) =0if and only if X=0and the induced map t →f(tX)is monotonically increasing on [0, ∞)for any rank onenilpotent X∈Mn. Characterization is given for surjective maps φon Mnsatisfying f(AB−BA) =f(φ(A)φ(B) −φ(B)φ(A)). The general theorem isthen used to deduce results on special cases when the function is the pseudo spectrum and the pseudo spectral radius.