We show persistence of both Anderson and dynamical localization in Schrödinger operators with non-positive (attractive) random decaying potential. We consider an Anderson-type Schrödinger operator with a non-positive ergodic random potential, and multiply the random potential by a decaying envelope function. If the envelope function decays slower than |$x$|^{-2}at infinity, we prove that the operator has infinitely many eigenvalues below zero. For envelopes decaying as |$x$|^{-α}at infinity, we determine the number of bound states below a given energy$E$<0, asymptotically as α↓0. To show that bound states located at the bottom of the spectrum are related to the phenomenon of Anderson localization in the corresponding ergodic model, we prove: (a) these states are exponentially localized with a localization length that is uniform in the decay exponent α; (b) dynamical localization holds uniformly in α.