Let ($X, L$) be a polarized 3-fold over the complex number field. In [Fk3], we proved that$g(L)≥q(X)$if$h$^{0}($L$)≥2 and moreover we classified ($X, L$) with$h$^{0}($L$)≥3 and$g(L)$=$q(X)$, where$g(L)$is the sectional genus of ($X, L$) and$q$($X$)=dim$H$^{1}($O$_{$X$}) the irregularity of$X$. In this paper we will classify polarized 3-folds ($X, L$) with$h$^{0}($L$)≥4 and$g(L)$=$q(X)$+1 by the method of [Fk3].