1
Bendikov A, Grigoryan A, Pittet C, et al. Isotropic Markov semigroups on ultra-metric spaces[J]. Russian Mathematical Surveys, 2013, 69(4): 589-680.
2
Port S C, Stone C J. Potential theory of random walks on Abelian groups[J]. Acta Mathematica, 1969, 122(1): 19-114.
3
Metzler R, Klafter J. The random walk\u0027s guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 2000, 339(1): 1-77.
4
Cherix P, Valette A, Jolissaint P, et al. On spectra of simple random walks on one-relator groups.With an appendix by Paul Jolissaint[J]. Pacific Journal of Mathematics, 1996, 175(2): 417-438.
5
Bingham N H. Random walk and fluctuation theory[J]. Handbook of Statistics, 2001: 171-213.
6
Bendikov A, Yan A G, Pittet C, et al. On a Class of Markov Semigroups on Discrete Ultra-Metric Spaces[J]. Potential Analysis, 2011, 37(2): 125-169.
7
Brunel A, Revuz D. Sur la theorie du renouvellement pour les groupes non abfliens[J]. Israel Journal of Mathematics, 1975, 20(1): 46-56.
8
Cohen J M, Colonna F, Singman D, et al. A global Riesz decomposition theorem on trees without positive potentials[J]. Journal of The London Mathematical Society-second Series, 2011, 83(3): 810-810.
9
Woess W. Behaviour at Infinity and Harmonic Functions of Random Walks on Graphs[C]., 1991: 437-458.
10
Bajunaid I, Cohen J M, Colonna F, et al. Classification of harmonic structures on graphs[J]. Advances in Applied Mathematics, 2009, 43(2): 113-136.