This paper investigates infinite-time spreading and finite-time blow-up for the Keller-Segel system. For 0 < m ≤ 2 − 2 / d, the L p space for both dynamic and steady solutions are detected with ${p:=\frac{d(2-m)}{2} }$ . Firstly, the global existence of the weak solution is proved for small initial data in L p . Moreover, when m > 1 − 2 / d, the weak solution preserves mass and satisfies the hyper-contractive estimates in L q for any p < q < ∞. Furthermore, for slow diffusion 1 < m ≤ 2 − 2/d, this weak solution is also a weak entropy solution which blows up at finite time provided by the initial negative free energy. For m > 2 − 2/d, the hyper-contractive estimates are also obtained. Finally, we focus on the L p norm of the steady solutions, it is shown that the energy critical exponent m = 2d/(d + 2) is the critical exponent separating finite L p norm and infinite L p norm for the steady state solutions.