Diffusion-generated motion by mean curvature is a simple algorithm for producing motion by mean curvature of a surface, in which the motion is generated by alternately diffusing and renormalizing a characteristic function. In this paper, we generalize diffusion-generated motion to a procedure that can be applied to the curvature motion of filaments, i.e., curves in <i>R</i> ^3, that may initially consist of a complex configuration of links. The method consists of applying diffusion to a complex-valued function whose values wind around the filament, followed by normalization. We motivate this approach by considering the essential features of the complex Ginzburg-Landau equation, which is a reaction-diffusion PDE that describes the formation and propagation of filamentary structures. The new algorithm naturally captures topological merging and breaking of filaments without fattening curves. We justify the new