Suppose$μ$is a positive measure on $\mathbb{R}^{2}$ given by$μ$=$ν$×$λ$, where$ν$and$λ$are Radon measures on $\mathcal{S}^{1}$ and $\mathbb{R}^{{\mathchoice {\raise .17ex\hbox {$\scriptstyle +$}} {\raise .17ex\hbox {$\scriptstyle +$}} {\raise .1ex\hbox {$\scriptscriptstyle +$}} {\scriptscriptstyle +}}}$ , respectively, which do not vanish on any open interval. We prove that if for either$ν$or$λ$there exists a set of positive measure$A$in its domain for which the upper and lower$s$-densities, 0<$s$≤1, are positive and finite for every$x$∈$A$then the uncentered Hardy–Littlewood maximal operator$M$_{$μ$}is weak-type (1,1) if and only if$ν$is doubling and$λ$is doubling away from the origin. This generalizes results of Vargas concerning rotation-invariant measures on $\mathbb{R}^{n}$ when$n$=2.