We prove a structure theorem for any n-rectifiable set E⊂Rn+1,n≥1, satisfying a weak version of the lower ADR condition, and having locally finite Hn (n-dimensional Hausdorff) measure. Namely, that Hn-almost all of E can be covered by a countable union of boundaries of bounded Lipschitz domains contained in Rn+1∖E. As a consequence, for harmonic measure in the complement of such a set E, we establish a non-degeneracy condition which amounts to saying that Hn|E is “absolutely continuous” with respect to harmonic measure in the sense that any Borel subset of E with strictly positive Hn measure has strictly positive harmonic measure in some connected component of Rn+1∖E. We also provide some counterexamples showing that our result for harmonic measure is optimal. Moreover, we show that if, in addition, a set E as above is the boundary of a connected domain Ω⊂Rn+1 which satisfies an infinitesimal interior thickness condition, then Hn|∂Ω is absolutely continuous (in the usual sense) with respect to harmonic measure for Ω. Local versions of these results are also proved: if just some piece of the boundary is n-rectifiable then we get the corresponding absolute continuity on that piece. As a consequence of this and recent results in “Rectifiability of harmonic measure” [Geom. Funct. Anal. 26 (2016), 703–728], we can decompose the boundary of any open connected set satisfying the previous conditions in two disjoint pieces: one that is n-rectifiable where Hausdorff measure is absolutely continuous with respect to harmonic measure and another purely n-unrectifiable piece having vanishing harmonic measure.