In this paper, we show that as τ → √−1∞, any zero of the Lam´e function converges to either ∞ or a ﬁnite point p satisfying Rep = 1 2 and e2πip being an algebraic number. Our proof is based on studying a special family of simply-periodic KdV potentials with period 1, i.e. algebro-geometric simply-periodic solutions of the KdV hierarchy. We show that except the pole 0, all other poles of such KdV potentials locate on the line Rez = 1 2. We also compute explicitly the eigenvalue setofthecorresponding L2[0,1] eigenvalueproblemforsuchKdVpotentials, thus extends Takemura’s works [26, 27]. Our main idea is to apply the classiﬁcation result for simply-periodic KdV potentials by Gesztesy, Unterkoﬂer and Weikard [11] and the Darboux transformation.