Recently, Kawasaki and Takahashi (J. Nonlinear Convex Anal. 14:71-87, 2013) defined a broad class of nonlinear mappings, called widely more generalized hybrid, in a Hilbert space which contains generalized hybrid mappings (Kocourek <i>et al.</i> in Taiwan. J.Math. 14:2497-2511, 2010) and strict pseudo-contractive mappings (Browder and Petryshyn in J. Math. Anal. Appl. 20:197-228, 1967). They proved fixed point theorems for such mappings. In this paper, we prove fixed point theorems for widely more generalized hybrid non-self mappings in a Hilbert space by using the idea of Hojo <i>et al.</i> (Fixed Point Theory 12:113-126, 2011) and Kawasaki and Takahashi fixed point theorems (J.Nonlinear Convex Anal. 14:71-87, 2013). Using these fixed point theorems for non-self mappings, we proved the Browder and Petryshyn fixed point theorem (J.Math. Anal. Appl. 20:197-228, 1967) for strict pseudo-contractive