We identify a strong stability condition on minimal submanifolds that implies uniqueness and dynamical stability properties. In particular, we prove a uniqueness theorem and a dynamical stability theorem of the mean curvature flow for minimal submanifolds that satisfy this condition. The latter theorem states that the mean curvature flow of any other submanifold in a neighborhood of such a minimal submanifold exists for all time, and converges exponentially to the minimal one. This extends our previous uniqueness and stability theorem which applies only to calibrated submanifolds of special holonomy ambient manifolds.
We consider localized deformation for initial data sets of the Einstein field equations with the dominant energy condition. Deformation results with the weak inequality need to be handled delicately. We introduce a modified constraint operator to absorb the first order change of the metric in the dominant energy condition. By establishing the local surjectivity theorem, we can promote the dominant energy condition to the strict inequality by compactly supported variations and obtain new gluing results with the dominant energy condition. The proof of local surjectivity is a modification of the earlier work for the usual constraint map by the first named author and R. Schoen and by P. Chru\'sciel and E. Delay, with some refined analysis.
In this paper the Orlicz鈥揗inkowski problem, a generalization of the classical Minkowski problem, is studied. Using the variational method, we obtain a new existence result of solutions to this problem for general measures.