We develop a local cohomology theory for FI^m-modules, and show that it in many ways mimics the classical theory for multi-graded modules over a polynomial ring. In particular, we define an invariant of FI^m-modules using this local cohomology theory which closely resembles an invariant of multi-graded modules over Cox rings defined by Maclagan and Smith. It is then shown that this invariant behaves almost identically to the invariant of Maclagan and Smith.
Some uniform theorems on the artinianness of certain local cohomology modules are proven in a general situation. They generalize and imply previous results about the artinianness of some special local cohomology modules in the graded case.
We give bounds for various homological invariants (including Castelnuovo-Mumford regularity, degrees of local cohomology, and injective dimension) of finitely generated VI-modules in the non-describing characteristic case. It turns out that the formulas of these bounds for VI-modules are the same as the formulas of corresponding bounds for FI-modules.
Given a closed exact Lagrangian in the cotangent bundle of a closed smooth manifold, we prove that the projection to the base is a simple homotopy equivalence.
We extend our family rigidity and vanishing theorems in [{\bf LiuMaZ}] to the Spin^ c case. In particular, we prove a K-theory version of the main results of [{\bf H}],[{\bf Liu1}, Theorem B] for a family of almost complex manifolds.