Some uniform theorems on the artinianness of certain local cohomology modules are proven in a general situation. They generalize and imply previous results about the artinianness of some special local cohomology modules in the graded case.
We develop a local cohomology theory for FI^m-modules, and show that it in many ways mimics the classical theory for multi-graded modules over a polynomial ring. In particular, we define an invariant of FI^m-modules using this local cohomology theory which closely resembles an invariant of multi-graded modules over Cox rings defined by Maclagan and Smith. It is then shown that this invariant behaves almost identically to the invariant of Maclagan and Smith.
Given a closed exact Lagrangian in the cotangent bundle of a closed smooth manifold, we prove that the projection to the base is a simple homotopy equivalence.
We extend our family rigidity and vanishing theorems in [{\bf LiuMaZ}] to the Spin^ c case. In particular, we prove a K-theory version of the main results of [{\bf H}],[{\bf Liu1}, Theorem B] for a family of almost complex manifolds.
We give bounds for various homological invariants (including Castelnuovo-Mumford regularity, degrees of local cohomology, and injective dimension) of finitely generated VI-modules in the non-describing characteristic case. It turns out that the formulas of these bounds for VI-modules are the same as the formulas of corresponding bounds for FI-modules.