We develop numerical methods for solving partial differential equations (PDE) defined on an evolving interface represented by the grid based particle method (GBPM) recently proposed in [S. Leung, H.K. Zhao, A grid based particle method for moving interface problems, J. Comput. Phys. 228 (2009) 77067728]. In particular, we develop implicit time discretization methods for the advectiondiffusion equation where the time step is restricted solely by the advection part of the equation. We also generalize the GBPM to solve high order geometrical flows including surface diffusion and Willmore-type flows. The resulting algorithm can be easily implemented since the method is based on meshless particles quasi-uniformly sampled on the interface. Furthermore, without any computational mesh or triangulation defined on the interface, we do not require remeshing or reparametrization in the case of highly distorted motion