We study the resonances of the Laplacian acting on the compactly supported sections of a homogeneous vector bundle over a Riemannian symmetric space of the non-compact type. The symmetric space is assumed to have rank-one but the irreducible representation τ of K defining the vector bundle is arbitrary. We determine the resonances. Under the additional assumption that τ occurs in the spherical principal series, we determine the resonance representations. They are all irreducible. We find their Langlands parameters, their wave front sets and determine which of them are unitarizable.