We give a geometric realization, the tagged rotation, of the AR-translation on the generalized cluster category associated to a surface S with marked points and non-empty boundary, which generalizes Brüstle–Zhang’s result for the puncture free case. As an application, we show that the intersection of the shifts in the 3-Calabi–Yau derived category D(Γ_S) associated to the surface and the corresponding Seidel–Thomas braid group of D(Γ_S) is empty, unless S is a polygon with at most one puncture (i.e. of type A or D).