Let$d$be a positive integer, $A={\mathbb{C}} [t_{1}^{\pm1},\ldots ,t_{d}^{\pm1}]$ be the Laurent polynomial algebra, and $W=\operatorname{Der} (A)$ be the derivation Lie algebra of$A$. Then we have the semidirect product Lie algebra$W$⋉$A$which we call the extended Witt algebra of rank$d$. In this paper, we classify all irreducible Harish-Chandra modules over$W$⋉$A$with nontrivial action of$A$.