We characterize mappings$S$_{$i$}and$T$_{$i$}, not necessarily linear, from sets $\mathcal {J}_{i}$ ,$i$=1,2, onto multiplicative subsets of function algebras, subject to the following conditions on the peripheral spectra of their products:$σ$_{$π$}($S$_{1}($a$)$S$_{2}($b$))⊂$σ$_{$π$}($T$_{1}($a$)$T$_{2}($b$)) and$σ$_{$π$}($S$_{1}($a$)$S$_{2}($b$))∩$σ$_{$π$}($T$_{1}($a$)$T$_{2}($b$))≠∅, $a\in \mathcal {J}_{1}$ , $b\in \mathcal {J}_{2}$ . As a direct consequence we obtain a large number of previous results about mappings subject to various spectral conditions.